KS-H-134/136

FEATURES

- Member of the KS-H-130 family small sized VHF/Hyperband/UHF tuner
- Systems CCIR: B/G, H; OIRT: D/K
- Digitally controlled (PLL) tuning via l²C-bus
- Off-air channels, S-cable channels and Hyperband
- World standardized mechanical dimensions and world standard pinning
- · Compact size
- Comply to "CENELEC EN55020" and "EN55013"

DESCRIPTION

The KS-H-134/136 tuners belongs to the KS-H-130 family of tuners, which are designed to meet a wide range of applications. It is a combined VHF/Hyperband/ UHF tuner suitable for CCIR systems B/G, H, or OIRT systems D/K. The low IF output impedance has been designed for direct drive of a wide variety of SAW filters with sufficient suppression of triple transient.

The tuners comply with the requirements of radiation, signal handling capability and immunity conforming with:

- CISPR 13 (1990) include. amendment 1 (1992) and amendment 2 (1993)
- European standards CENELEC EN55013, EN55020

ORDERING INFORMATION

TYPESYSTEMDESCRIPTIONKS-H-134 ECCIRsymmetrical IF output; IEC connector (14.5 mm), I²C status byteKS-H-134 OOIRTsymmetrical IF output; IEC connector (14.5 mm), I²C status byteKS-H-136 ECCIRsymmetrical IF output; IEC connector (14.5 mm)KS-H-136 OOIRTsymmetrical IF output; IEC connector (14.5 mm)

MARKING

The following items of information are printed on a sticker that is on the top cover of the tuner or printed directly on the top cover:

- Company logo
- Type number
- Year and month code
- Quality inspection print

KS-H-134/136

INTERMEDIATE FREQUENCIES

SIGNAL	FREQUENCY (MHz)				
SIGNAL	SYSTEM B/G, H	SYSTEM D/K			
Picture carrier	38.90	38.00			
Colour	34.47	33.594, 33.75			
Sound	33.40	31.5			

Note

1. The oscillator frequency is above the input signal frequency.

CHANNEL COVERAGE

	OFF-AIF	R CHANNELS	CABLE CHANNELS		
BAND	CHANNELS FREQUENCY RANGE (MHz)		CHANNELS	FREQUENCY RANGE (MHz)	
Low band	E2 to C	48.25 to 82.25 ⁽¹⁾	S01 to S08	69.25 to 154.25	
Mid band	E5 to E12	175.25 to 224.25	S09 to S38	161.25 to 439.25	
High band	E21 to E69	471.25 to 855.25 ⁽²⁾	S39 to S41	447.25 to 463.25	

Notes

1. Enough margin is available to tune down to 45.25 MHz.

2. Enough margin is available to tune up to 863.25 MHz.

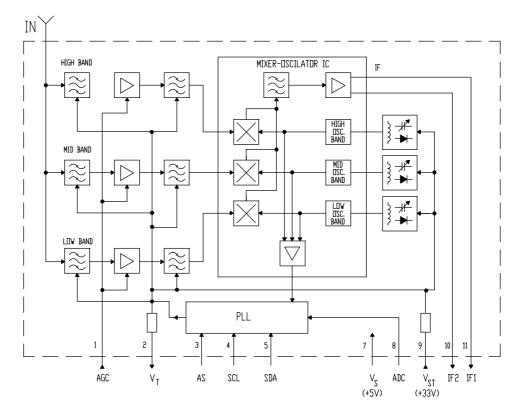


Fig.1 Electrical block diagram

KS-H-134/136

Specification

PINNING

SYMBOL	PIN	DESCRIPTION
AGC	1	gain control voltage
V _T	2	tuning voltage
AS	3	I ² C-bus address select
SCL	4	I ² C-bus serial clock
SDA	5	I ² C-bus serial data
n.c.	6	not connected
Vs	7	PLL supply voltage +5 V
ADC/n.c.	8	ADC input / not connected ⁽¹⁾
V _{ST}	9	tuning supply voltage +33 V
IF2	10	symmetrical IF output
IF1	11	symmetrical IF output
GND	MT1, MT2	mounting tags (ground)
IN		aerial input connector IEC (14.5 mm)

Note

1. For KS-H-136 only

LIMITING VALUES

Environmental conditions

SYMBOL	PARAMETER	MIN.	MAX.	UNIT				
Non-operationa	Non-operational conditions							
T _{amb}	ambient temperature	-40	+60	O ⁰				
RH	relative humidity	-	100	%				
Operational conditions								
T _{amb}	ambient temperature	-15	+60	O ⁰ C				
RH	relative humidity	-	93	%				

KS-H-134/136

Limiting values under operational conditions

The tuner can be guaranteed to function properly under the following conditions

SYMBOL	PARAMETER	PIN	MIN.	TYP.	MAX.	UNIT
Vs	supply voltage	7	4.75	5.00	5.5	V
I _S	supply current	/	-	-	130	mA
V _{ST}	supply voltage	9	30	33	35	V
I _{ST}	supply current	9	-	-	1.7	mA
V _{AGC}	AGC input voltage		-	4.0	4.5	V
ΔV_{AGC}	AGC input voltage range	1	0.3	-	4.0	V
I _{AGC}	AGC input current		-	-	20	μA
V _{AS}	address select input voltage	3	-	-	5.5	V
V _{SCL}	serial clock input voltage	4	-	-	5.5	V
V _{SDA}	serial data input voltage	- 5	-	-	5.5	V
I _{SDA}	serial data input current	5	-1	-	5	mA

ELECTRICAL DATA

Conditional data

Unless otherwise specified, all electrical values for Chapter "Electrical data" apply at the following conditions and the electrical performance is related both to systems B, G, H and D, K.

A proper function is guaranteed within the specified operational conditions but a certain deterioration of performance parameters may occur at the limits of operational conditions.

SYMBOL	PARAMETER	VALUE	UNIT
T _{amb}	ambient temperature	25 +/- 5	°C
RH	relative humidity	60 +/- 15	%
Vs	supply voltage	5.0 +/- 0.1	V
V _{AGC}	AGC input voltage	4.0 +/- 0.1	V
V _{ST}	tuning supply voltage	33 +/- 0.5	V
t _{pr}	pre-heating time (+5 V at pin 7)	10	minute
Z _{S(AE)}	aerial source impedance (unbalanced)	75	Ω

KS-H-134/136

Aerial input characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VSWR	reflection coefficient	referred to 75 Ω impedance	-	2	4	
V _{ant}	antenna connection disturbance voltage	< 1.75 GHz; comply to "EN55013 section 3.3"	-	-	46	dBμV

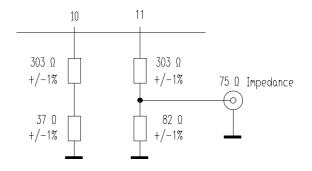
General characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f _p	frequency range:					
	low band mid band high band		48.25 161.25 447.25	- -	154.25 439.25 855.25	MHz MHz MHz
Gv	voltage gain: all channels gain taper	The IF output is loaded with a test circuit according diagram fig.2	40	45 -	52 7	dB dB
F	noise: low band mid band high band	The IF output is loaded with a test circuit according diagram fig.3	- -	6.0 6.0 6.0	9 9 8	dB dB dB
ΔV_{AGC}	AGC input voltage range: low and mid band high band		45 40	60 50	-	dB dB
α _i	image rejection: low band mid band high band		66 60 50	70 69 60	- -	dB dB dB
α_{IF}	IF rejection (picture): channel E2 low, mid and high bands		55 65	68 71	-	dB dB
V _{ESD}	electrostatic discharge (ESD): protection on pins 1 to 5 and 6 to 11 protection on antenna socket	note 1	2	-	-	kV kV
	oscillator characteristics: oscillator tuning resolution lock-in time		-	-	note 2 150	kHz msec

Notes

The tuner meets specifications IEC 1000-4-2 level 1 for pins and level 4 for antenna socket.
Resolution 31.25 kHz, 50.00 kHz or 62.5 kHz (see Table "Ratio select bits").

KS-H-134/136


Visibility test

The tuners meet the requirements of the European norm "EN55020", when measured in an adequate television receiver.

Recommended adjustment of Tuner AGC in TV chassis:

Radiation

The tuners meet the requirements of the European norm "EN55013" and "CISPR13" (1990), when measured in an adequate television receiver.

test circuit attenuation : 26 dB

Fig. 2 Test circuit for voltage gain.

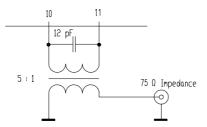


Fig. 3 Test circuit for noise figure.

KS-H-134/136

APPLICATION INFORMATION

WRITE mode

					BITS				
BYTE	7 ⁽¹⁾ MSB	6	5	4	3	2	1	0 LSB	A ⁽²⁾
Address byte	1	1	0	0	0	MA1	MA2	R\W ⁽³⁾	А
Program divider byte 1	0	n14	n13	n12	n11	n10	n9	n8	А
Program divider byte 2	n7	n6	n5	n4	n3	n2	n1	n0	А
Control information byte1	1	CP	T2	T1	T0	RSA	RSB	0	А
Control information byte 2	Х	Х	Х		BS3	BS2	BS1	BS0	А

Notes

1. X = don't care.

2. A = Acknowledge.

3. R/W bit = 0 for WRITE mode, R/W bit = 1 for READ mode.

Address selection

 $V_s = =5 V$ (PLL supply voltage).

MA1	MA0	ADDRESS	VOLTAGE AT PIN 3
0	0	C0	GND to 0.1XVs
0	1	C2	OPEN or 0.2XV _s to 0.3XV _s
1	0	C4	0.4XV _s to 0.7XV _s
1	1	C6	0.8XV _s to 1.1XV _s

Programmable divider settings (bytes 1 and 2)

Divider ratio:

N = R x	{ fRF,pc + fIF,pc },	
---------	----------------------	--

 $\begin{array}{l} \mathsf{R} = 16 \text{ with reference divider} = 512 \\ \mathsf{R} = 20 \text{ with reference divider} = 640 \\ \mathsf{R} = 32 \text{ with reference divider} = 1024 \end{array}$

N = (16384 x n14) + (8192 x n13) + (4096 x n12) + (2048 x n11) + (1024 x n10) + (512 x n9) + (256 x n8) + (128 x n7) + (64 x n6) + (32 x n5) + (16 x n4) + (8 x n3) + (4 x n2) + (2 x n1) + n0

Control byte 1

CP can be set to either 0 (low current) or 1 (high current).

Charge pump settings:

CP = 1, for fast tuning

CP = 0, for moderate speed tuning with slightly better residual oscilator FM.

Unnecessary charge pump action will result in very low tuning voltage ($V_T=0V$) which may drive the oscillator to extreme conditions.

KS-H-134/136

Test mode setting bits

T2	T1	Т0	Setting
0	0	0	normal operation with automatic charge pump switch OFF ⁽¹⁾
0	0	1	normal operation with automatic charge pump switch OFF ⁽²⁾
0	1	Х	charge pump OFF
1	1	0	charge pump ON; sinking current
1	1	1	charge pump ON; sourcing current
1	0	0	internal test mode
1	0	1	internal test mode

Notes

- 1. For KS-H-134 only.
- 2. Automatic charge pump function only applicable for KS-H-134, for KS-H-136 normal operation. This function automatically switches the CP to HIGH at a new tuning action and forces CP to LOW when the PLL is locked.

Ratio select bits

RSA	RSB	REFERENCE DIVIDER	STEP SIZE (kHz)
Х	0	640	50.00
0	1	1024	31.25
1	1	512	62.50

Band switching (Control byte 2)

BIT									
X MSB	X	х	X	BS3	BS2	BS1	BS0 LSB	ACTIVE PORT	BAND
Х	Х	Х	Х	Х	0	0	1	BS0	Low band
Х	Х	Х	Х	Х	0	1	0	BS1	Mid band
Х	Х	Х	Х	Х	1	0	0	BS2	High band

READ mode

	BITS								
BYTE	7 MSB	6	5	4	3	2	1	0 LSB	A ⁽¹⁾
Address byte	1	1	0	0	0	MA1	MA0	1	А
Status byte	POR ⁽²⁾	FL ⁽³⁾	ACPS ⁽⁴⁾	Х	Х	A2 ⁽⁵⁾	A1 ⁽⁵⁾	A0 ⁽⁵⁾	А

Notes

1. A = Acknowledge.

2. POR = Power On Reset flag (POR=1 at power on).

3. FL = In-lock flag (FL=1 at loop is phase-locked).

- 4. ACPS = Automatic Charge Pump Switch flag, active ACPS=0, non active ACPS=1.
- 5. A2, A1, and A0 are the digital outputs of the 5 level ADC.

KS-H-134/136

ADC byte

VOLTAGE AT PIN 8	A2	A1	A0
$0.60 \text{XV}_{\text{S}}$ to V_{S}	1	0	0
$0.45 \text{XV}_{\text{S}}$ to $0.60 \text{XV}_{\text{S}}$	0	1	1
0.30XV _S to 0.45 XV _S	0	1	0
$0.15 \text{XV}_{\text{S}}$ to $0.30 \text{XV}_{\text{S}}$	0	0	1
0 to 0.15XV _S	0	0	0

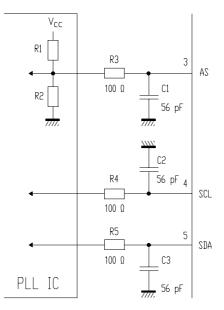


Fig.4 I²C-bus load.

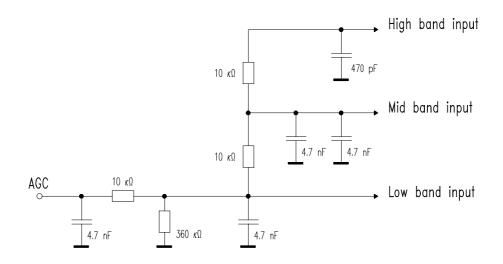


Fig.5 Internal AGC circuit.

KS-H-134/136

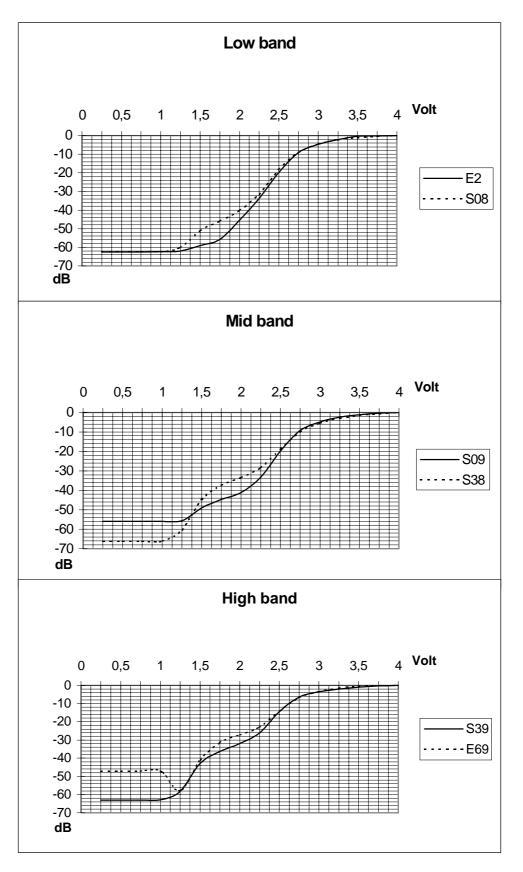


Fig.6 AGC characteristics.

KS-H-134/136

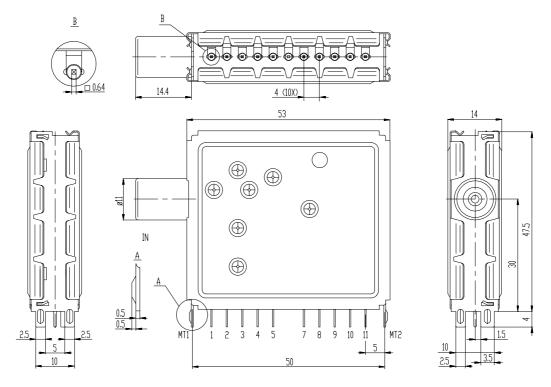


Fig.7 Mechanical outline

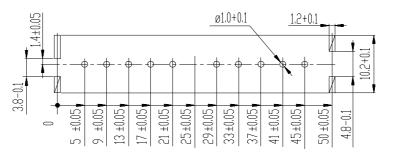


Fig.8 Punching pattern seen from solder side

Aerial connections

Standard IEC socket female 75 Ω .

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Selteka customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnity Selteka for any damages resulting from such improper use or sale.